6,941 research outputs found

    Scalable Sparse Cox's Regression for Large-Scale Survival Data via Broken Adaptive Ridge

    Full text link
    This paper develops a new scalable sparse Cox regression tool for sparse high-dimensional massive sample size (sHDMSS) survival data. The method is a local L0L_0-penalized Cox regression via repeatedly performing reweighted L2L_2-penalized Cox regression. We show that the resulting estimator enjoys the best of L0L_0- and L2L_2-penalized Cox regressions while overcoming their limitations. Specifically, the estimator is selection consistent, oracle for parameter estimation, and possesses a grouping property for highly correlated covariates. Simulation results suggest that when the sample size is large, the proposed method with pre-specified tuning parameters has a comparable or better performance than some popular penalized regression methods. More importantly, because the method naturally enables adaptation of efficient algorithms for massive L2L_2-penalized optimization and does not require costly data driven tuning parameter selection, it has a significant computational advantage for sHDMSS data, offering an average of 5-fold speedup over its closest competitor in empirical studies

    The classical origin of quantum affine algebra in squashed sigma models

    Get PDF
    We consider a quantum affine algebra realized in two-dimensional non-linear sigma models with target space three-dimensional squashed sphere. Its affine generators are explicitly constructed and the Poisson brackets are computed. The defining relations of quantum affine algebra in the sense of the Drinfeld first realization are satisfied at classical level. The relation to the Drinfeld second realization is also discussed including higher conserved charges. Finally we comment on a semiclassical limit of quantum affine algebra at quantum level.Comment: 25 pages, 2 figure

    Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 1B: Concise review

    Get PDF
    Reports on the design process, support of the design process, IPAD System design catalog of IPAD technical program elements, IPAD System development and operation, and IPAD benefits and impact are concisely reviewed. The approach used to define the design is described. Major activities performed during the product development cycle are identified. The computer system requirements necessary to support the design process are given as computational requirements of the host system, technical program elements and system features. The IPAD computer system design is presented as concepts, a functional description and an organizational diagram of its major components. The cost and schedules and a three phase plan for IPAD implementation are presented. The benefits and impact of IPAD technology are discussed

    Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 6: IPAD system development and operation

    Get PDF
    The strategy of the IPAD implementation plan presented, proposes a three phase development of the IPAD system and technical modules, and the transfer of this capability from the development environment to the aerospace vehicle design environment. The system and technical module capabilities for each phase of development are described. The system and technical module programming languages are recommended as well as the initial host computer system hardware and operating system. The cost of developing the IPAD technology is estimated. A schedule displaying the flowtime required for each development task is given. A PERT chart gives the developmental relationships of each of the tasks and an estimate of the operational cost of the IPAD system is offered

    Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 1A: Summary

    Get PDF
    IPAD was defined as a total system oriented to the product design process. This total system was designed to recognize the product design process, individuals and their design process tasks, and the computer-based IPAD System to aid product design. Principal elements of the IPAD System include the host computer and its interactive system software, new executive and data management software, and an open-ended IPAD library of technical programs to match the intended product design process. The basic goal of the IPAD total system is to increase the productivity of the product design organization. Increases in individual productivity were feasible through automation and computer support of routine information handling. Such proven automation can directly decrease cost and flowtime in the product design process

    Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 4: IPAD system design

    Get PDF
    The computing system design of IPAD is described and the requirements which form the basis for the system design are discussed. The system is presented in terms of a functional design description and technical design specifications. The functional design specifications give the detailed description of the system design using top-down structured programming methodology. Human behavioral characteristics, which specify the system design at the user interface, security considerations, and standards for system design, implementation, and maintenance are also part of the technical design specifications. Detailed specifications of the two most common computing system types in use by the major aerospace companies which could support the IPAD system design are presented. The report of a study to investigate migration of IPAD software between the two candidate 3rd generation host computing systems and from these systems to a 4th generation system is included

    First evidence for spectral state transitions in the ESO243-49 hyper luminous X-ray source HLX-1

    Full text link
    The brightest Ultra-Luminous X-ray source (ULX), ESO 243-49 HLX-1, with a 0.2 - 10 keV X-ray luminosity of up to 10^42 erg s^-1, provides the strongest evidence to date for the existence of intermediate mass black holes. Although small scale X-ray spectral variability has already been demonstrated, we have initiated a monitoring campaign with the X-ray Telescope onboard the Swift satellite to search for luminosity-related spectral changes and to compare its behavior with the better studied stellar mass black holes. In this paper, we report a drop in the XRT count rate by a factor of ~8 which occurred simultaneously with a hardening of the X-ray spectrum. A second observation found that the source had re-brightened by a factor of ~21 which occurred simultaneously with a softening of the X-ray spectrum. This may be the first evidence for a transition between the low/hard and high/soft states.Comment: Accepted by ApJ Letter, 2 figure

    On classical q-deformations of integrable sigma-models

    Get PDF
    JHEP is an open-access journal funded by SCOAP3 and licensed under CC BY 4.0A procedure is developed for constructing deformations of integrable σ-models which are themselves classically integrable. When applied to the principal chiral model on any compact Lie group F, one recovers the Yang-Baxter σ-model introduced a few years ago by C. Klimčík. In the case of the symmetric space σ-model on F/G we obtain a new one-parameter family of integrable σ-models. The actions of these models correspond to a deformation of the target space geometry and include a torsion term. An interesting feature of the construction is the q-deformation of the symmetry corresponding to left multiplication in the original models, which becomes replaced by a classical q-deformed Poisson-Hopf algebra. Another noteworthy aspect of the deformation in the coset σ-model case is that it interpolates between a compact and a non-compact symmetric space. This is exemplified in the case of the SU(2)/U(1) coset σ-model which interpolates all the way to the SU(1, 1)/U(1) coset σ-modelPeer reviewedFinal Published versio

    Lunin-Maldacena backgrounds from the classical Yang-Baxter equation -- Towards the gravity/CYBE correspondence

    Get PDF
    We consider \gamma-deformations of the AdS_5xS^5 superstring as Yang-Baxter sigma models with classical r-matrices satisfying the classical Yang-Baxter equation (CYBE). An essential point is that the classical r-matrices are composed of Cartan generators only and then generate abelian twists. We present examples of the r-matrices that lead to real \gamma-deformations of the AdS_5xS^5 superstring. Finally we discuss a possible classification of integrable deformations and the corresponding gravity solution in terms of solutions of CYBE. This classification may be called the gravity/CYBE correspondence.Comment: 18 pages, no figure, LaTeX, v2:references and further clarifications adde

    Finsler and Lagrange Geometries in Einstein and String Gravity

    Full text link
    We review the current status of Finsler-Lagrange geometry and generalizations. The goal is to aid non-experts on Finsler spaces, but physicists and geometers skilled in general relativity and particle theories, to understand the crucial importance of such geometric methods for applications in modern physics. We also would like to orient mathematicians working in generalized Finsler and Kahler geometry and geometric mechanics how they could perform their results in order to be accepted by the community of ''orthodox'' physicists. Although the bulk of former models of Finsler-Lagrange spaces where elaborated on tangent bundles, the surprising result advocated in our works is that such locally anisotropic structures can be modelled equivalently on Riemann-Cartan spaces, even as exact solutions in Einstein and/or string gravity, if nonholonomic distributions and moving frames of references are introduced into consideration. We also propose a canonical scheme when geometrical objects on a (pseudo) Riemannian space are nonholonomically deformed into generalized Lagrange, or Finsler, configurations on the same manifold. Such canonical transforms are defined by the coefficients of a prime metric and generate target spaces as Lagrange structures, their models of almost Hermitian/ Kahler, or nonholonomic Riemann spaces. Finally, we consider some classes of exact solutions in string and Einstein gravity modelling Lagrange-Finsler structures with solitonic pp-waves and speculate on their physical meaning.Comment: latex 2e, 11pt, 44 pages; accepted to IJGMMP (2008) as a short variant of arXiv:0707.1524v3, on 86 page
    corecore